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Molecular Beam Epitaxy (MBE)
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Scanning Tunneling Microscopy
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STM Image Presentation
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Can STM Help MBE?
4/10/95:  First images - "We'll grow our best GaAs(001)-(2×4)"

1.6 µm × 1.6 µm 4000 Å × 4000 Å

NEXT DAY:  big pits gone, atomic-scale order visible

320 Å × 320 Å
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After Two Years of STM/MBE

5/97:  Almost ideal terrace morphology, good (2×4)
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1.6 µm × 1.6 µm

MBE:  1 ML/s at 600 °C, with 30 s interrupts every 90 s.
           After ~1 µm, 10 min interrupt to finish.

320 Å × 320 Å
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III-V Device Optimization

Requires integrated approach.
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"6.1 Å" Family of III-V's: InAs, GaSb, AlSb
6.06 Å

l For high-speed and optoelectronic devices
l Resonant tunneling diodes (RTD’s), IR detectors, IR lasers

l Composed of superlattices and quantum-wells
l Interfaces critical:  large volume fraction of device
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Interface Sensitivity:  IR Laser Structures

l AlSb - InAs - InGaSb - InAs  Superlattice
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What Do We Need To Learn?

l Interface roughness - two components
l Topography: 2D vs 3D growth

l Intermixing:  during or after interface formation

l Kinetics vs. Thermodynamics
l Interplay between energy barriers and energy differences

l Continuium vs. Atomistic
l Island/Step edge dynamics

l Surface reconstruction: anisotropy, III/V
 stoichiometry

Control via growth methods, e.g. MEE, interrupts.



Start At The Atom:  Surface Reconstructions

l Focus on device-growth conditions: V-rich

l InAs(001)-(2×4), c(4×4):  like GaAs

l Nominally obeys Electron Counting Model (ECM):
In-dangling bonds (db’s) empty, As-db’s filled

l AlSb vs. GaSb(001):  role of material properties
 vs. lattice constant  (AlSb 0.7% larger)

l AlSb:  only (1×3), c(2×6) RHEED reports

l GaSb:  (1×3), c(2×6), (1×5), (2×5) by RHEED,
 previous STM of c(2×6)



_
[110]

[110]

InAs(001)-(2×4) Reconstruction

30 Å × 30 Å

Follows electon counting model.

III-V(001)-b2(2×4)GaAs(001)-"(2×4)"
Filled State Image

1/2 ML As
3/4 ML In
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GaSb-AlSb RHEED Structure Diagram

l GaSb: (1×3) - c(2×6) -
 (2×5):  under optimal
 conditions no (1×5)

l AlSb: (1×3) - c(4×4)

l AlSb(001)-c(4×4) for
 first time
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III-Sb(001)-"(1×3)" Reconstruction

140 Å × 140 Å

Quasi-periodic
 defects

III-Sb(001)-c(2×6)GaSb(001)-c(2×6)

Filled State Images

2/3 ML Sb
"(1×3)""(1×3)"

1 ML Sb

(Al,Ga,In)Sb "(1×3)" all look similar.
Actual structure more complex?70 Å × 70 Å

III plane

1.66 ML
Surface Sb
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AlSb(001)-c(4×4) Reconstruction

60 Å × 60 Å

Filled-State Image (3.3 V)

Follows ECM:  expect insulating surface.

3/4 ML Sb
1 ML Sb

Al plane

Simple dimer row structure:  like
 all other III-V’s (except GaSb).

1.75 ML
Surface Sb
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GaSb(001)-"(2×5)" Reconstructions: STM
Two (n×5)-like structures

(atypical mixed-phase shown)

150 Å:  Filled States (2.4 V)

65 Å:  Filled States (1.8 V)

At lower T’s,
different (2×10): 
 features rotate,
 are ~1 Å higher
 than on c(2×10)

65 Å:  Filled States (0.4 V)

On high-T side of
 "×5" range, c(2×10)

(2×10)(2×10)

c(2×10)c(2×10)



GaSb(001)-"(2×5)" Models

Three extra e's/(2×5): expect metallic surfaces.

Both models violate electron counting model!

4.31 Å

c(2×10): 1.8 ML Sb (2×10): 2.2 ML Sb

Ga plane

Sb plane
(1 ML)

SIDE VIEW

Sb rows
(0.8 ML)

Sb dimers (0.4 ML)



GaSb(001)-c(2×10): Experiment vs. Theory

l First-principles, electronic-
structure calculation (LDA)

Filled States (1.8 V)
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l Local-state density ρ(r,ε)
 computed from wave
 functions

l At each r, integrate ρ(r,ε)
 over filled or empty states

l Simulate constant current
 STM image by surface of
 constant integrated ρ(r,ε)

Similar results for (2×10).
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GaSb(001)-(2×10): Experiment vs. Theory

Filled States (0.4 V)
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AlSb and GaSb(001) Tunneling Spectroscopy

l AlSb insulating, as
 expected from ECM

l GaSb weakly metallic:
 non-zero conductivity
 at all bias voltages

l Theory shows occupied
 conduction band states
 on GaSb

Electron counting model violated on GaSb(001).
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104.2° 96.4°

4.339

Strain Due to Sb Dimer Rows
Assume bulk-like Sb-Sb bonds (2.91 Å)

l Strain anisotropic:  lower along dimer rows

l Displacements similar, but GaSb 7% softer

GaSb: good match to Sb + low stiffness = continuous dimer rows.

103.9°95.6°
95.5°

4.310

GaSb
Bulk Sb

(3-bonds + filled db)AlSb

95.5°



Strain vs. Stiffness on III-V(001) Surfaces

l Multilayer structure with 3-fold Sb + filled db favored
l Sb cohesive energy > than III-Sb = lower interface energy

l Filled surface db’s lower surface energy

l Resulting Sb dimers strain substrate:
l Missing dimers relieve stress

l Strain energy depends on substrate stiffness:
l AlSb 7% stiffer than GaSb:  GaAs > AlSb > InAs >  GaSb > InSb

l GaSb: good lattice match to Sb + low stiffness 
 allows continuous dimer rows = metallic "(2×5)"



"6.1 Å" V-Terminated Reconstructions

InAs

l GaSb (2×10)'s violate ECM - weakly metallic

Do reconstructions impact devices?

GaSb AlSb
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 Surfaces
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(2×10) 2.20 Sb/1.0 Ga
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Impact of Reconstruction on Step Structure
GaSb(001)-c(2×10)

500 Å

_

Implications for: tilted SL, quantum wire growth;
                        electronic mobility anisitropy  

InAs(001)-(2×4)

Continous double dimer rows
 => high kink energy
=> straight steps along [110]

Different dimer row structure
 => lower kink energy
=> rougher step edges



Impact of Reconstruction on III-V
 Heterostructure Interfaces:  GaSb/InAs

GaSb(001)-c(2×6)
Excess Sb on growth

 surface (1.66 layers) =>
 intermixing at interface?

MBE Growth Direction

}

Ga

}
Sb In As

InAs(001)-(2×4)
As deficient on growth

 surface (0.5 layers) =>
intermixing at interface?

Ga Sb



Cross-Sectional STM of (110) Surfaces

STM TIP

Only see every-other III (empty) or V (filled) layer.
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X-STM of "6.1 Å" Superlattices

Sb in
 InAs

AlSb/InAs �2 ML GaSb/InAs �2 ML

Intermixing at IIISb/InAs, "abrupt" at InAs/IIISb.

InGaSb

AlSb
 Buffer
 Layer

InAsInAs
Filled States: 
 As/Sb
 sublattices

AlSb
InAs

12

IR Laser

6 6 14 ML 14 ML

GaSbInAs
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Growth
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Evolution of InAs/AlSb/InAs RTD Interfaces
InAs(001)-(2×4) Buffer Layer

3.2 µm × 3.2 µm

l Nearly ideal surface

l ~1 µm-wide terraces => 0.05° miscut 

l MBE:  1 ML/s at 500 °C, 30 s interrupts
 every 90s, 10 min interrupt after ~1 µm

800 Å × 800 Å

InAs(001)
 substrate

~0.5 µm buffer

RTD

[110]

InAs

Growth

AlSb



Sb2 on InAs(001)-(2×4) at ~400 °C

2 s Sb2

l Want InSb-like bonds at interface

l Surface has InSb "(1×3)"-like reconstruction

Sb very reactive:  creates 2-level
 surface with 25% vacancy islands.

InAs(001)
 substrate

1 ML In + 2 s Sb230 s Sb2

800 Å × 800 Å
_

Filled State Images[110][110]

~0.5 µm buffer

Sb2 Interrupt



5 ML AlSb on InAs at ~400 °C

Quenched

l Addition of AlSb epilayer roughens
 surface to 3 levels

Interrupt required for well-defined
 islands and atomic-scale order.

InAs(001)
 substrate

5 min Interrupt under Sb2

800 Å × 800 Å

Filled
 States
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looks like c(2×6)
reconstruction

[110]

~0.5 µm buffer

1 ML In + Sb2

5 ML AlSb



22 ML InAs on AlSb/InAs at ~400 °C

l Represents interface after first barrier

l Now 5 surface levels (but mostly 3)

l Disordered "(1×3)" on surface

Much different than starting Sb/InAs;
 history + lower temperature.InAs substrate

Terminated with 30 s Sb2

800 Å × 800 Å

Filled
 States
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100 Å × 100 Å

~0.5 µm buffer

1 ML In + Sb2

22 ML InAs

5 ML AlSb

30 s Sb2

5 min interrupt

RTD

InAs AlSb



Origins of Interface Roughness:  Sb/InAs

Can NOT anneal out vacancies:
 get complex reconstruction.

Thermodynamics win!

2 s Sb2 at 400 °C 30 s Sb2InAs(001)-(2×4)

OR

1.66 Sb

800 Å × 800 Å

600 s at 500 °C
OR



Origins of Interface Roughness:  Sb/InAs

Roughness due to reconstruction stoichiometry.

1 ML In + 2 s Sb2 1.25 ML In + 2 s Sb2

c(2×6)

InAs(001)-(2×4)

(2×4)

OR

OR3/4 In
1/2 As

Sb

800 Å × 800 Å

3/4 In
1.66 Sb
1.0 In



Evolution of InAs/AlSb/InAs RTD Interfaces

Atomic-scale characterization = atomic-scale control!

?

InAs(001)
 substrate

?

~0.5 µm buffer
1 ML In + Sb2

22 ML InAs

5 ML AlSb

30 s Sb2

5 min interrupt

+1/4 ML
 In



MBE Under the
 Microscope

l Atomic-scale structure does matter

l Complex interplay between kinetics and thermo.
l "Obvious" approach does not always improve interface

l Need to better integrate theory, device character.

Work to be done - demonstrate improved devices!

Devices

In-Situ

MBE Ex-Situ

Theory


